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A one-dimensional map is introduced which exhibits an intermittent chaotic behavior with coexisting
laminar and localized phases. The generated trajectories demonstrate the interplay between the two
competing motion modes and are analyzed in terms of Lévy statistics. The mean-squared displacements
and the propagators of the motion are calculated and their relationship to an experimental realization is

discussed.
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Anomalous diffusion in dynamical systems is by now
well established [1-9]. One can observe in various
dynamical systems dispersive [8] and enhanced [9]
motions characterized by mean-square displacements
that deviate from simple Brownian motion, namely,
(r%(t)) ~t% with a>1 for motional enhancement and
a < 1 for the dispersive case. Both types of anomalies can
be described theoretically by means of continuous-time
random walks (CTRW) with broad distributions of trap-
ping or flight times. In the latter case the common oc-
currence of Lévy statistics in dynamical systems has been
demonstrated [5-7].

In a recent experiment by Solomon, Weeks, and Swin-
ney [9] on tracer particles in a two-dimensional rotating
flow, it has been observed that dispersive and enhanced
modes of motion can coexist in such a way that a particle
may perform long flights and be also intermittently
trapped in space. Similar behavior has been observed by
following trajectories in two-dimensional Hamiltonian
systems, in the Chirikov-Taylor map, and in a model for
surface diffusion [10]. The coexistence of laminar and lo-
calized modes has been addressed by Zaslavsky [11] using
fractional Fokker-Planck equations.

In this paper we introduce a one-dimensional map that
generates intermittent chaotic motion with coexisting
dispersive and laminar motion events. This map is an ex-
tension of previously studied maps that lead either to
dispersive or enhanced diffusion [2,5]. We demonstrate
the applicability of the random walk scheme with Lévy
stable-law distributions in analyzing the motion generat-
ed by the map. We show how the competing trends of
laminar and localized phases lead to diffusional behavior,
different than previously obtained, and cover the whole
range of dispersive, regular, and enhanced behaviors. A
related model applied to electrons in liquids has been dis-
cussed in Ref. [3].

Figure 1 shows the one-dimensional map which is
defined as

(1+e€)x +ax*—1, 0<x=1
_ (1
S ) (1+&)x —a(t—x), 1=<x<1l.
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This (dissipative) map is discontinuous at the boundaries
of each box but is continuous otherwise. For e=¢=0 it
shows marginal stable fixed points at x =0 and x =1.
The neighborhood of the fixed point at x =0 is responsi-
ble for the laminarity, while the fixed point at x =1 gives
rise to spatial localization. The exponents z and Z deter-
mine the characteristic behaviors of the two types of
motion events, free flight and localized, respectively. The
prefactors a and @ are just weights and are chosen so that
the map function is continuous including the first deriva-
tive at x =}. For e=2=0 we used @ =42 /(z +%) and
@=4%2/(z +2). € and € were considered to be small quan-
tities and to differ from zero in the cases z>2 and Z> 2,
respectively, in order to avoid problems in the numerical
realization of the statistical analyses. This relatively sim-
ple map displays a rich spectrum of behaviors and a
unique interplay of the two modes of motion.

In Fig. 2 we present two typical trajectories generated
by the map defined in Eq. (1). The interplay of laminar
and spatial localization (no motion) behavior is evident.
The corresponding distributions of flight (laminar) and

FIG. 1. The map f(x) for the laminar-localized motion, Eq.
(1), for z =% and Z=35, as indicated, corresponding to the ex-
ponents y =3 and 7= 1.
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FIG. 2. Two typical trajectories. The upper curve for values
z=1.66 and Z=1.4, corresponding to y=1.5 and ¥=2.5,
which give rise to enhanced diffusion with a=1.5. The lower
curve for values z =1.8 and 2=2.33, corresponding to y =1.25
and 7=0.75, which give rise to enhanced diffusion again with
a=1.5. Note that the localization phases and laminar phases
occur on different scales.

localization times, as shown in Fig. 3, follow approxi-
mately power laws. For the laminarity and for the locali-
zation times we observe

W)~ and P(t)~t 771, 2)

respectively, with the exponents y=(z—1)"! and
#=(z—1)"!. The observed trajectories and the coex-
istence of the two motional modes resemble the behavior,
although in a completely different type of system, that
has been reported by Solomon, Weeks, and Swinney [9].
In this respect our map generates statistical properties
that are amenable to experimental observation. What re-
lates the different cases are the underlying Lévy stochas-
tic processes, which we now outline.

We choose the velocity picture in which the particle
moves continuously at a constant velocity, changes direc-
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FIG. 3. The probability distributions (t) and ¥(z) for
v=1.5 and #=0.5, as indicated. Simulation results are given

by solid lines; the dashed lines indicate the power laws of Eq.
(2).

tions at random, and is occasionally interrupted by
phases of spatial localization. This means that the parti-
cle does not move at a constant velocity at all times but
that the phases of laminar motion are intermittently in-
terrupted by periods of no motion on the scale of typical-
ly one box. The probability distribution to move a dis-
tance r in time ¢ in a single motion event, in the laminar
phase, and to stop at r for initiating a new motion event
at random, is [5]

P(r,0)=18(|r| —)y(1) , 3)

where length and time are given in dimensionless units.
¥(¢) is given in Eq. (2). Equation (3) defines the basic
motion events in Lévy walks [5S—7]. We further introduce
Y(r,t), the probability density to move a distance r in
time ¢ in a single motion event and not necessarily stop at
r [5]:

W(r,t)=18(]r| —t)ftwtﬁ(‘r)dr . @)

Y(r,t) and W(r,z) are the relevant quantities for the
description of the laminar phase of the motion. For the
localized case we note that

‘T/(t)=ft°°$(7')d7' (5)

is the probability for not having moved until time ¢. In
the description of the propagator, the probability density
to be at location r at time ¢, we assume that the observa-
tion starts with an event of motion at constant velocity
and we can thus write

P(rn)=W(r,0+ [ 9(r,t Wt =) dt’
® ’ © ’ tl ”n ’ ”n
+ [ ar [ Tar [ Cde e
X Pt — 1" W(r —r',t —1')
+oe, (6)

where the first term denotes the probability to reach loca-
tion r in time ¢ in a single motion event. The second term
is the probability to reach r at an earlier time and to stay
localized until time ¢. The third term is the probability to
reach 7 in time ¢ in two motion events interrupted by one
period of localization. The sum has to be extended over
all possible combinations of motion events interrupted by
periods of localization. ~ Taking the Fourier-Laplace
transform and summing over even and odd terms in-
dependently we obtain

_ W(k,u)+P(u)(k,u)
1—Pupk,u)

Here and in what follows we make use of the convention
that the variables denote in which space (Fourier and/or
Laplace) the function is thought to hold. A similar ex-
pression is obtained when the walks are initiated by a lo-
calization event followed by motion at constant velocity.
Furthermore, for the analysis of iterated maps in terms of
CTRWs we have demonstrated that stationary conditions
are an important issue [10].

For the derivation of the mean-squared displacement
we make use of {r%(¢))=L"1{—82P(k,u)l;—o}. From

P(k,u)

(N
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an analysis of the asymptotic behavior we derive the lead-
ing term for the mean-squared displacement {r%(¢)) ~¢¢,
with the exponent a depending on ¥ and ¥, namely,

2+min{¥,1} —min{2,y}, y>1
a= (8)

2+min{7,y}—y, 0<y<l

In our simulation calculations we have concentrated on
the regime 1 <y <2, which corresponds to the intermedi-
ate enhanced diffusion regime if localization is disregard-
ed [5]. According to Eq. (8) the combined effects lead to
the mean-squared displacement

2T 1<y <2, <1
(r¥(n)) ~ ‘ 3—y 4 = 4 9)

27, 1<y<2, 7>1.
Equation (9) indicates that, depending on the two ex-
ponents ¥ and ¥, the motion shows enhanced, regular, or
dispersive behavior. It should be noted that for 7 > 1, for
which #(z) in Eq. (2) has a finite first moment, the
enhancement reduces to the result obtained by the origi-
nal Lévy-walk scheme [5,12]. In Ref. [9] the exponents
©n=2.3%0.2 for the flights, v=1.6%0.3 for the sticking,
and a=1.65%0.15 for the mean-squared displacement
are reported, which were determined from independent
measurements. According to the convention of Eq. (2)
we have y=p—1=1.3+0.2 and ¥=v—1=0.6+0.3 so
that we obtain from Eq. (8) a=1.310.5, which is con-
sistent with the experimental value.

In Fig. 4 we show numerical results for the time evolu-
tion of the displacements. Plotted is the ratio {r(z)) /¢
for various ¥ and 7 values. The denominator ¢ has been
chosen to strengthen the impression of the deviation from
simple Brownian motion. The results follow reasonably
the predicted power-law behaviors. Different time ex-
ponents are found for {|r(¢)|)?, which may even display
dispersions (a < 1) when {7%(¢)) is enhanced (a> 1), e.g.,
for y=1.25 and 7 =0.5.

For the intermediate-enhanced diffusion regime,
1<y <2, relevant to the behavior discussed in this paper,

10®
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FIG. 4. The time evolution of the mean-squared displace-
ment for various enhanced and dispersive cases. The numerical
results of {7%(¢)) /t are given by solid lines for ¥ and 7 values as
indicated. The dashed lines are the predicted slopes according

to Eq. (9).

and 7 > 1, the small (k,u) expansion of the propagator
gives up to the leading terms P(k,u)~(u +c|k|?)7],
which yields the known Lévy stable distribution [5]

t~VYTL(§), r<t

Pt~ 1o, r>¢

(10)
where £ is the scaling variable £=cr/t!/7 and the cutoff
is due to the &-function correlation in Eq. (3). Here the
laminar phase dominates the transport properties.

A different behavior is derived for 1 <y <2 and 7 <1,
where the small (k,u) expansion of the propagator gives
P(k,u)~u?"Yu”+c|k|?)"!. This leads to the approxi-
mate scaling form

t7TrQ(E), £—0
P(r,t)~ 1t 77E 771 st (11)
0, r>t,

where Q (&) is a scaling function. Depending on ¥ and 7,
Q (&) shows a cusp at the origin [10]. The scaling vari-
able is £=r/t7/7. In the case of y>2 and 7 <1 we re-
cover the dispersive behavior treated in Ref. [S]. Here
the role of localization is pronounced and may even dom-
inate, a situation which we did not observe in Hamiltoni-
an systems [10]. From the scaling in Egs. (10) and (11) we
notice that for the average of the absolute value of the
displacement we have {|r(z)|) ~¢™nL7/Y for 1<y <2,
in agreement with the results in Ref. [11].

Finally, in Fig. 5 we give the results for the propagator
for y =% =1.25 in the scaling representation. Because of
the finite mean trapping time the propagator, as expect-
ed, follows the stable law, Eq. (10), for r <z. The collapse
of the lines for various times onto a single master curve
indicates that scaling holds. The peaks at r =0 and r =t¢
are attributed to stationary condition effects which result
from the method of averaging [5,13].

Summarizing, we have introduced a one-dimensional
map that exemplifies the coexistence of free flights and
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FIG. 5. The propagator P(r,t) for y =% =1.25. The numeri-
cal results are plotted as solid lines for times ¢, as indicated, in
the scaling representation with the scaling variable £=r/¢!/7.
The dashed line is the stable law cL, (cx) with ¢ adjusted to the
map parameters.
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spatial traps. The resulting intermittent laminar-
localized motion has been analyzed in terms of CTRWs
and Lévy statistics and the predictions have been corro-
borated by numerical calculations. We have shown that,
depending on the two exponents y and 7, the asymptotic
behavior is dominated by the localized-dispersive or
laminar-enhanced type of motion.
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